

SYNTHESES AND STRUCTURES OF DONOR-ACCEPTOR COMPLEXES OF SELENIUM DIOXIDE WITH PYRIDINE AND TRIMETHYLAMINE

Jiří TOUŽÍN^{a1,*}, Kamila NEPLECHOVÁ^b, Zdirad ŽÁK^{a2} and Miloš ČERNÍK^{a3}

^a Department of Inorganic Chemistry, Masaryk University, 611 37 Brno, Czech Republic;
e-mail: ¹ touzin@chemi.muni.cz, ² zak@chemi.muni.cz, ³ cernik@chemi.muni.cz

^b Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135,
612 65 Brno, Czech Republic; e-mail: kamila@ibp.cz

Received December 14, 2001

Accepted April 8, 2002

Donor-acceptor (DA) complexes of pyridine (py)-SeO₂ and trimethylamine (TMA)-SeO₂ were prepared by direct reactions of solid selenium dioxide with the amines. Both are white solids decomposing slowly at room temperature. The former complex decomposes into its components, while the latter one undergoes a redox reaction. The single-crystal structure determination of py-SeO₂ has revealed that the chain-like structure of (SeO₂)_n is destroyed during the formation of the DA bond and the py-SeO₂ molecule is bound to the nearest neighbouring molecule through two weak Se...O interactions. More labile TMA-SeO₂ complex could not be prepared as single crystals. Analogous molecular structure of both complexes was proved by their Raman spectra. A modified general valence force field was used for the interpretation of Raman spectra of TMA-SeO₂ and TMA-SO₂.

Keywords: DA complex; Selenium dioxide; Pyridine; Amines; Crystal structure; Raman spectra; Normal coordinate analysis; X-Ray diffraction.

Donor-acceptor complexes of sulfur dioxide with pyridine¹ and trimethylamine² of the general formula B-SO₂ (B = py, TMA) were prepared by direct reaction of the components. Complex py-SO₂ was characterised by Raman spectroscopy³; TMA-SO₂ complex, apart from electronic⁴, vibrational^{5,6} and microwave⁷ spectra, was also studied by single-crystal X-ray analysis⁸.

The reaction of selenium dioxide with pyridine has been studied in connection with its use as an oxidising agent in organic synthesis. Adducts of the types 2py·SeO₂ (ref.⁹), py·SeO₂ (ref.¹⁰) and py·2SeO₂ (ref.¹¹) have been reported. None of them, however, was sufficiently characterised since in all the cases the adduct was not a chemical individuum. Mishiev *et al.*¹⁰ characterised py·SeO₂ by ¹H NMR spectroscopy (CH₃OD, multiplet, chemical shift δ 7.95–8.58 ppm, downfield shift 0.95 ppm relative to the free pyridine) and by IR spectroscopy (two bands at 1 370 and 1 200 cm⁻¹ that were misassigned to vibrations of the SeO₂ group)¹⁰.

Analogous reaction with trimethylamine has not been studied so far. We, therefore, attempted to prepare donor-acceptor complexes of both bases with SeO_2 with the aim of gaining information on their composition, properties and structure.

EXPERIMENTAL

Selenium dioxide was obtained by resublimation of a commercial product. Pyridine was refluxed with selenium dioxide, then distilled from barium oxide, boiled with phosphorus pentoxide and distilled. Trimethylamine was dried by passing over solid potassium hydroxide and sodium wire, purified by boiling with selenium dioxide and then distilled. Tetravalent selenium was determined iodometrically¹², pyridine by UV spectroscopy ($\lambda = 255 \text{ nm}$). Trimethylamine was displaced from the samples by 30% KOH and determined by the Kjeldahl method. Single-crystal diffraction data were collected at -150°C on a KUMA KM-4 kappa axis diffractometer using $\text{MoK}\alpha$ radiation. The programs employed were SHELXS86 (ref.¹³) for the structure solutions and SHELXL93 (ref.¹⁴) for the refinement and geometry calculations; drawings were made using ORTEP (ref.¹⁵). Raman spectra (in cm^{-1}) were recorded on a SPEX Ramalog 3 spectrometer. The samples were excited by the 488 nm line of a Spectra Physics 165-03 Ar^+ laser (50–100 mW). Normal coordinate analysis was performed by the Wilson G,F-matrix method, using published programs¹⁶.

Preparation of py- SeO_2

Pyridine (28.14 g, 0.356 mol) was added to selenium dioxide (1.41 g, 0.013 mol) and the suspension heated in a closed system to 115–120 °C for 2 h to give a pale yellow solution. After decanting this solution from undissolved $(\text{SeO}_2)_n$ and reducing its volume to 50% in vacuum, a white crystalline solid was obtained. The product was filtered off and the remaining pyridine was evaporated in vacuum at 20 °C. Yield about 45%. Hygroscopic py- SeO_2 melts in sealed capillary at 54 °C with decomposition. For py- SeO_2 (190.1) calculated: 41.62% py, 41.54% Se^{IV} ; found: 42.20% py, 40.72% Se^{IV} . Raman spectrum: 142 s, 166 s, 260 w, 302 vw, 370 w, 395 vw, 439 vw, 638 w, 647 w, 763 vw, 871 vs, 895 m, 1 017 m, 1 031 m, 1 064 vw, 1 156 vw, 1 196 w, 1 478 vw, 1 558 vw, 1 600 vw.

Preparation of TMA- SeO_2

Liquid trimethylamine (5.07 g, 0.086 mol) of was condensed onto selenium dioxide (0.78 g, 7 mmol). The mixture was heated to 50 °C and then cooled to -50°C . A white powder was obtained, from which TMA was removed in vacuum at -30°C . The very labile substance was stored at low temperature. Yield about 70%. For TMA- SeO_2 (167.1) calculated: 33.58% TMA, 47.26% Se^{IV} ; found: 33.71% TMA, 46.58% Se^{IV} . Raman spectrum: 141 s, 180 w sh, 232 vw sh, 284 vw, 313 vw, 376 w, 419 m, 435 m, 810 m, 829 vw, 866 vs, 874 m sh, 1 005 vw sh, 1 033 vw, 1 099 vw, 1 214 s, 1 396 vw, 1 432 w, 1 478 vw.

RESULTS AND DISCUSSION

The solubility of pure selenium dioxide in anhydrous pyridine at laboratory temperature is very low, increasing very slowly when heating to the boiling point of pyridine. The solubility substantially increases when heating further in a closed system. At the same time, however, the amount of oily fluorescent side products, which cannot be quantitatively removed from the desired adduct, rises. The best method for preparation of pure py- SeO_2 was to set the reaction temperature slightly above the boiling point of pyridine. The py- SeO_2 adduct is also formed in the reaction of Se_3O_7 with pyridine¹⁷ or by thermal decomposition of py- $\text{Se}^{\text{IV}}\text{O}(\text{OSi}(\text{CH}_3)_2)$ (ref.¹⁸). In both these cases, the reagents are hardly available. Hence, for preparative use the direct reaction of the components is the most suitable solution. When heated in an open system, py- SeO_2 starts to release pyridine already at 30 °C; the decomposition is complete at 180 °C.

Crystal Structure of py- SeO_2

The structure of py- SeO_2 was solved by a heavy-atom method in a straightforward manner and refined anisotropically on F^2 . Details of the structure determination are given in Table I. The structure consists of py- SeO_2 molecules joined into dimers (Fig. 1) through weak intermolecular Se...O contacts (2.996(4) Å), clearly shorter than the sum of the van der Waals radii of Se and O atoms (3.4 Å). Both pyridine rings are coplanar and include the angle 37.8° with the Se_2O_2 plane.

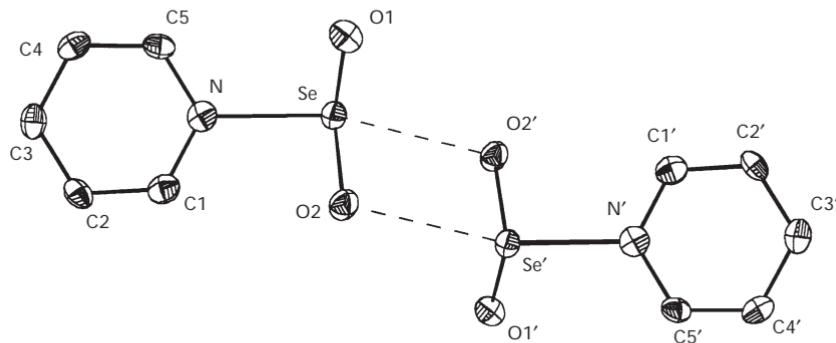


FIG. 1
ORTEP representation of the py- SeO_2 dimer (thermal ellipsoids drawn with 50% probability)

TABLE I
Experimental data for the X-ray diffraction study of py·SeO₂

Empirical formula	C ₅ H ₅ NO ₂ Se
M _w	190.06
T, K	120(2)
λ, Å	0.71073
Crystal system	monoclinic
Space group	P2 ₁ /n
a, Å	7.673(6)
b, Å	3.903(3)
c, Å	20.43(2)
α, °	90
β, °	93.69(8)
γ, °	90
V, Å ³	610.6(9)
Z	4
D _c , g cm ⁻³	2.068
μ, mm ⁻¹	6.063
F(000)	368
Crystal size, mm	0.50 × 0.15 × 0.10
θ range of data collection, °	2.78–26.53
Index ranges	-9 ≤ h ≤ 9, -4 ≤ k ≤ 0, -25 ≤ l ≤ 17
No. of reflections measured	1 620
No. of independent reflections	1 254
R _{int}	0.0686
Refinement method	Full-matrix least-squares on F _o ²
Data, restraints, parameters	1 244; 0; 82
Goodness-of-fit on F ²	1.073
R ₁ , wR ₂ ^a , final [I > 2σ(I)]	0.0428, 0.1119
R ₁ , wR ₂ , all data	0.0710, 0.1462
Largest difference peak and hole, e Å ⁻³	0.841; -0.906

^a wR₂ = [Σ[w(F_o² - F_c²)²]/Σw(F_o²)²]^{1/2}, where w⁻¹ = [σ²(F_o²) + (aP)² + bP] and P = [max (F_o², 0) + 2F_c²]/3.

The molecular packing in the elemental cell is shown in Fig. 2. Important bond lengths and angles are given in Table II. The donor-acceptor bond Se-N (2.17 Å) is substantially longer than covalent bonds Se-N in nitrogen

TABLE II
Selected bond lengths (in Å) and angles (in °) for py·SeO₂

Se-O2	1.652(4)	O2-Se-O1	110.4(2)
Se-O1	1.655(4)	O2-Se-O2 ^a	81.6(2)
Se-N	2.171(4)	O1-Se-O2 ^a	105.4(2)
Se-O2	3.000(4)	N-Se-O2 ^a	158.53(13)
C1-N	1.345(7)	N-C1-C2	121.1(4)
C1-C2	1.396(7)	C1-C2-C3	119.3(5)
C2-C3	1.397(7)	C2-C3-C4	119.0(5)
C3-C4	1.410(7)	C5-C4-C3	118.5(4)
C4-C5	1.403(7)	N-C5-C4	121.3(5)
C5-N	1.344(6)	C5-N-C1	120.8(4)
O2-Se-N	93.9(2)	C5-N-Se	120.4(3)
O1-Se-N	95.2(2)	C1-N-Se	118.7(3)

^a Symmetry transformations used to generate equivalent atoms: #1 -x, -y, -z.

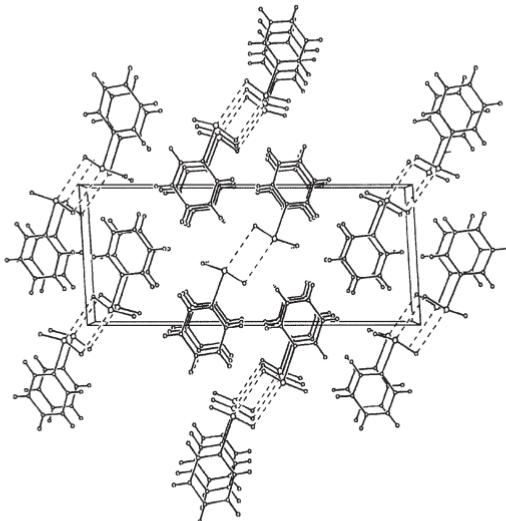


FIG. 2
Molecular packing of py·SeO₂ as viewed along the *b*-axis

derivatives of selenic acid¹⁹ (1.77 to 1.82 Å) but comparable with the lengths of donor-acceptor bonds in 4py·Se₂O₅ (2.18–2.47 Å) (ref.¹⁷) and 2py·SeOCl₂ (2.19 Å) (ref.²⁰).

CCDC 169736 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge, CB2 1EZ, UK; fax: +44 1223 336033; or deposit@ccdc.cam.ac.uk).

Raman Spectra and Normal Coordinate Analysis

Raman spectra of both donor-acceptor complexes are depicted in Figs 3 and 4. The assignment of the bands due to stretching vibrations of the SeO₂ group in the region 800–900 cm⁻¹ is unambiguous in both spectra. In the case of py·SeO₂, no bands of the donor molecule lie in this range. For TMA·SeO₂ there can be observed a medium intense band due to the symmetrical stretching vibration $\nu_s(\text{NC}_3)$ (810 cm⁻¹) and a very weak band at 829 cm⁻¹ belonging to the same vibration of the free amine that could not be removed from the sample without its partial decomposition.

The character of both spectra in the region 500–800 cm⁻¹ confirms that no bridging bonds Se–O–Se are present in the adducts and that the linear polymer chains of selenium dioxide are cleaved to monomers by the attack of the base. In the spectrum of TMA·SeO₂, there is no band in this region; three weak bands at 638, 647 and 763 cm⁻¹ in the spectrum of py·SeO₂ be-

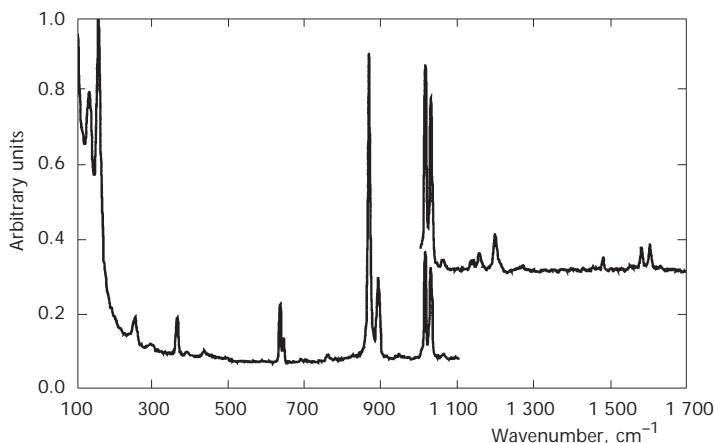


FIG. 3
Raman spectrum of py·SeO₂

long²¹ to normal vibrations of pyridine ν_3 , ν_{12} and ν_{23} . Weak intermolecular interactions Se–O···Se that were found in py·SeO₂ crystals, are not observed in this region. Comparison of the wavenumbers belonging to normal vibrations of pyridine in DA complex py·SeO₂ with those of free pyridine and its other DA complexes gives the possibility of estimating the strength of DA interaction in these compounds²². This criterion suggests that the strengths of the DA bonds in py·SeO₂ and py·SO₂ are approximately the same and much lower than those in the adducts of pyridine with sulfur trioxide and selenium trioxide¹⁸.

Deformational vibrations in the N-SeO₂ group and stretching vibrations of the DA bond Se–N lie in the wavenumber region below 450 cm⁻¹. Non-characteristic vibrations in TMA·SeO₂ were interpreted with the aid of normal coordinate analysis. Simultaneously, the calculations were also performed for TMA·SO₂ in order to assess whether the assignment is consistent for both spectra. Fundamental frequencies for TMA·SO₂, except τ (CNSO), were read out from the Raman spectrum of the solution in liquid SO₂ (ref.⁶), while for TMA·SeO₂ the wavenumbers from the Raman spectrum of a microcrystalline sample were used.

Molecules TMA·ZO₂ (Z = S, Se) with optimum mutual positions of donor and acceptor parts can belong at maximum to point group C_s . If, for simplification, the CH₃ groups are considered as vibrating units with relative weight of *ca* 15, they can exercise 15 normal vibrations. They are all active both in IR and Raman spectra and their division into symmetry types is described by fully reduced vibrational representation $\Gamma = 9 A' + 6 A''$. Out of

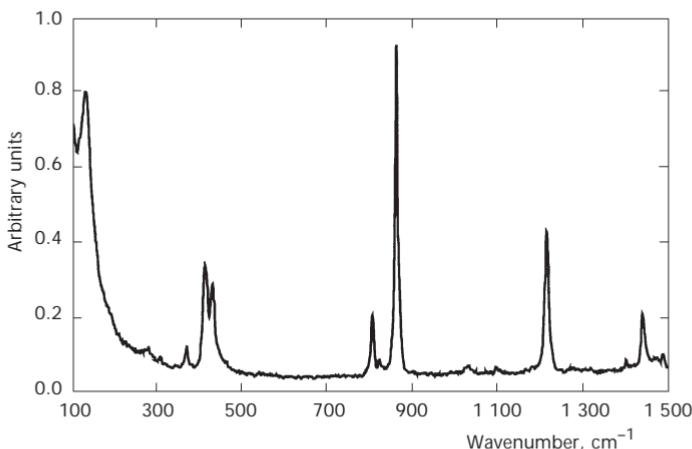


FIG. 4
Raman spectrum of TMA·SeO₂

nine vibrations of the type A', four are stretching and five are deformational; of six vibrations of the type A'', two are stretching and four are deformational (see Table IV). Structural parameters of the TMA·SO₂ molecule were taken from⁸; for the N-SeO₂ group, the values determined for py·SeO₂ and the geometry of the NC₃ group were considered identical in both adducts. Details of the chosen set of internal symmetrical coordinates, modification of the general valence force field, and the procedure of calculation of quadratic potential constants are described in ref.¹⁸

Out of fifteen adjusted parameters, final values only for ten quadratic potential constants (QPC) are listed in Table III. The values f_{ZN} are lower, and f_{CN} slightly higher than for adducts TMA·ZO₃ (ref.⁶). This is in accordance with lower strength of DA interaction in adducts of oxides ZO₂, and with the associated change in polarity of C–N bonds. The last five parameters are the elements of \mathbf{F} matrix ($F_{66}^{A'} = F_{33}^{A''}$, $F_{77}^{A'}$, $F_{99}^{A'} = F_{55}^{A''}$, $F_{29}^{A'}$ and $F_{57}^{A'}$), whose individual QPC constants cannot be calculated. By the re-insertion of all fifteen adjusted parameters in the secular equation, the experimental values of the fundamental frequencies are reproduced with an absolute error not exceeding 1 cm⁻¹.

Interpretation of Raman spectra of both studied donor-acceptor complexes of TMA, together with data on distribution of potential energy into

TABLE III
Quadratic potential constant (QPC, in N m⁻¹) of TMA·ZO₂ (Z = S, Se)

QPC	TMA·SO ₂	TMA·SeO ₂
f_{ZO}	853.7	590.3
f'_{ZO}	-20.88	25.16
f_{CN}	317.4	320.8
f'_{CN}	25.32	23.07
f_{ZN}	204.9	177.4
f_{OZO}	90.81	53.99
f_{OZN}	45.41	26.90
f'_{OZN}	-21.77	-13.23
f_{OZNC}	3.75	2.76
$f_{ZN/OZN}$	23.09	22.07

individual symmetric coordinates, are listed in Table IV. It can be seen that all stretching vibrations of both adducts are fully characteristic, except vibrations of DA bonds, $\nu(\text{ZN})$. They occur together with several deformational vibrations of groups ZO_2 and NC_3 in the wavenumber range 450–200 cm^{-1} and are subjected to significant mixing that results in total loss of characteristics. As a result, a surprising dominance of $\nu(\text{SeN})$ in the band at 419 cm^{-1} arises, while the band with prevalent $\nu(\text{SN})$ lies lower by ca 30 cm^{-1} . The $\nu(\text{SN})$, however, does not considerably contribute to lower-positioned bands, while $\nu(\text{SeN})$ significantly influences the origin of bands at 313 a 232 cm^{-1} .

TABLE IV
Fundamental IR modes of TMA- ZO_2 (Z = S, Se)

No.	Assignment	TMA- SO_2		TMA- SeO_2	
		$\tilde{\nu}$, cm^{-1}	PED ^a , %	$\tilde{\nu}$, cm^{-1}	PED ^a , %
Type A'					
1	$\nu_s(\text{ZO}_2)$	1 091	93 v_1	866	97 v_1
2	$\nu'_s(\text{NC}_3)$	1 020	75 v_2	1 033	78 v_2
3	$\nu_s(\text{NC}_3)$	796	72 v_3	810	74 v_3
4	$\delta(\text{ZO}_2)$	555	76 v_4	376	98 v_4
5	$\nu(\text{ZN})$	386	59 v_5 + 31 v_8	419	40 v_5 + 33 v_8
6	$\delta'_s(\text{NC}_3)$	435	57 v_6 + 25 v_7	435	63 v_6
7	$\omega(\text{ZO}_2)$	455	42 v_7 + 23 v_6	313	73 v_7 + 31 v_5
8	$\delta_s(\text{NC}_3)$	297	69 v_8 + 23 v_7	232	64 v_8 + 31 v_5
9	$\rho(\text{NC}_3)$	203	85 v_9	180	83 v_9
Type A''					
10	$\nu_{as}(\text{ZO}_2)$	1 274	97 v_{10}	874	99 v_{10}
11	$\nu_{as}(\text{NC}_3)$	1 020	71 v_{11}	1 005	77 v_{11}
12	$\delta_{as}(\text{NC}_3)$	455	58 v_{12} + 27 v_{11}	435	77 v_{12} + 20 v_{11}
13	$\rho(\text{ZO}_2)$	386	69 v_{13} + 23 v_{12}	284	77 v_{13}
14	$\rho'(\text{NC}_3)$	203	89 v_{14}	181	81 v_{14}
15	$\tau(\text{CNZO})$	168	96 v_{15}	141	96 v_{15}

^a Only contributions higher than 20% (rounded to integers) are given for potential energy distribution (PED).

REFERENCES

1. Hoffmann K. R., van der Werf C. A.: *J. Am. Chem. Soc.* **1946**, 68, 997.
2. Burg A. B.: *J. Am. Chem. Soc.* **1943**, 65, 1629.
3. a) Tramer A.: *Bull. Acad. Pol. Sci. C.III* **1956**, 4, 355; b) Tramer A.: *Bull. Acad. Pol. Sci. C.III* **1957**, 5, 501; c) Tramer A.: *Bull. Acad. Pol. Sci. C.III* **1957**, 5, 509; d) Toužín J.: *Ph.D. Thesis*. Masaryk University, Brno 1974.
4. a) Moede J. A., Curran C.: *J. Am. Chem. Soc.* **1949**, 71, 852; b) Christian S. D., Grundes J.: *Nature* **1967**, 214, 1111; c) Grundes J., Christian S. D.: *J. Am. Chem. Soc.* **1968**, 90, 2239.
5. Hata T., Kinumaki S.: *Nature* **1964**, 203, 1378.
6. Toužín J., Bauer P.: *Collect. Czech. Chem. Commun.* **1981**, 46, 2600.
7. Jung J. O., LaBarge M. S., Matos J., Kampf J. W., Hillig K. W., Kuczkowski R. L.: *J. Am. Chem. Soc.* **1991**, 113, 4732.
8. van der Helm D., Childs J. D., Christian S. D.: *J. Chem. Soc., Chem. Commun. D* **1969**, 887.
9. Edgington B., Firth J. B.: *J. Soc. Chem. Ind., Trans. Commun.* **1936**, 55, 198.
10. Mishiev R. D., Ibragimova D. S., Rzaeva Z. I., Mamedov E. Sh.: *Zh. Org. Khim.* **1992**, 28, 2215.
11. Jerchel D., Bauer E., Hipchen H.: *Chem. Ber.* **1955**, 88, 156.
12. Blanka B., Hudec P., Mošna P., Toužín J.: *Collect. Czech. Chem. Commun.* **1963**, 28, 3434.
13. Sheldrick G. M.: *Acta Crystallogr., Sect. A: Fundam. Crystallogr.* **1983**, 39, 876.
14. Sheldrick G. M.: *Acta Crystallogr., Sect. A: Fundam. Crystallogr.* **1990**, 46, 467.
15. Johnson C. K.: *ORTEP II, Report ORNL-5138*. Oak Ridge National Laboratory, Tennessee 1976.
16. a) Špirko V., Klíma P., Hájek B.: *Sb. Vys. Sk. Chem.-Technol. Praze, Anorg. Chem., Chem. Technol. B* **1972**, 15, 15; b) Adámek P., Hájek B.: *Sb. Vys. Sk. Chem.-Technol. Praze, Anorg. Chem., Chem. Technol. B* **1974**, 18, 69.
17. Neplechová K., Žák Z., Toužín J.: *Main Group Chem.* **1997**, 2, 149.
18. Neplechová K.: *Ph.D. Thesis*. Masaryk University, Brno 1996.
19. a) Žák Z., Růžička A., Glowiaik T.: *Can. J. Chem.* **1991**, 69, 1080; b) Žák Z., Růžička A.: *Acta Crystallogr., Sect. C: Cryst. Struct. Commun.* **1992**, 48, 2254; c) Žák Z., Marek J., Kezník L.: *Z. Anorg. Allg. Chem.* **1996**, 622, 1101; d) Žák Z., Kezník L.: *Z. Kristallogr.* **1996**, 211, 544.
20. Lindquist I., Nahringbauer G.: *Acta Crystallogr., Sect. C: Cryst. Struct. Commun.* **1959**, 12, 638.
21. Long D. A., Murfin D. S., Thomas E. L.: *Trans. Faraday Soc.* **1963**, 59, 12.
22. Kurze R., Paetzold R.: *Z. Anorg. Allg. Chem.* **1972**, 387, 367.